International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology Vol. 5, Special Issue 3, November 2016

A Survey on Audio Noise Removal Techniques

Apoorva Athaley¹, Papiya Dutta²

Research Scholar, Dept of ECE, Gyan Ganga College of Technology, Jabalpur¹

Associate Professor & H.O.D, Dept of ECE, Gyan Ganga College of Technology, Jabalpur²

Abstract: In this paper different audio denoising techniques are discussed. Most of the audio denoising techniques reduce Gaussian white noise from audio signals. Diagonal estimation techniques and non-diagonal estimation techniques are discussed. Different audio denoising techniques and noises are shown through the taxonomy.

Keywords: Audio denoising, Gaussian noise, Musical noise, Non-diagonal estimation, Thresholding, AWGN.

I. INTRODUCTION

Audio is corrupted by different types of noise during lasso type penalty. We formulate the problem as a saddle acquisition of audio. The aim of noise removal from audio point search problem and propose an algorithm that is to attenuate the noise without modifying the original numerically finds the solution. Based on the optimality signal. Various applications of audio denoising are music conditions of the problem, we present a guideline on how and speech restoration. Diagonal estimation techniques to select the parameters of the problem. We discuss the and non-diagonal estimation techniques are two types of performance and the influence of the parameters through audio denoising techniques. To attenuate the noise from experiments. audio signals diagonal time frequency audio denoising algorithms process each independently. The drawback of these algorithms are they have a limited performance, denoised signal contains musical noise, denoised sound is contaminated and the audio perception is degraded due to the superposition of musical noise. To overcome these drawbacks non-diagonal estimation techniques are required [6], [7], [11].

II. AUDIO DENOISING - RELATED WORKS

The problem of extracting the desired sound signal, corrupted by "additive white Gaussian noise (AWGN) has been of interest to many researchers for practical as well as theoretical reasons" [1]. The removal of AWGN is difficult as it persists at all the frequencies in the signal. Two of the popular methods of denoising the musical instrument signals are given as follows:

(i) Those based on adaptive filter algorithms [11] [19];

(ii) Those based on wavelet based algorithms [14].

Spectral audio denoising methods usually make use of the magnitudes of a time-frequency representation of the signal is discussed in paper [1]. However, if the timefrequency frame consists of quadrature pairs of atoms (as in the short-time Fourier transform), then the phases of the coefficients also follow a predictable pattern, for which simple models are viable. In this paper, we propose a scheme that takes into account the phase information of the signals for the audio denoising problem. The scheme level in redundant time frequency signal representations is requires to minimize a cost function composed of a studied by authors and they found that the remaining noise diagonally weighted quadrature data term and a fused-

spectrogram coefficient Wavelet based algorithm for audio denoising is discussed in paper [2]. The authors focused on audio signals corrupted with white noise. White noise is especially hard to remove because it is located in all frequencies. The authors used Discrete Wavelet Transform (DWT) to transform noisy audio signal in wavelet domain. It was assumed that signal is represented by high amplitude DWT coefficients and noise is represented by low amplitude coefficients. To get audio signal with less noise, thresholding of coefficients are used and they are transformed back to time domain. The authors proposed modified universal thresholding of coefficients which results with better audio signal. Objective Degree Grade (ODG) was main criterion for evaluation of experimental results. The authors have also compared ODG with Mean Square Error (MSE) which is widespread used for estimating signal quality. Results show that MSE shows little enhancement or even loss while ODG and also informal listening tests prove significant enhancement of signal quality. This denoising algorithm worked better for lower noise signals but for higher noise signals higher threshold must be set, but except noise part of original signal is also removed by it causing audible artifacts in denoised signal.

> In paper [3], block attenuation methods that were initially applied in orthogonal wavelet signal representations [4] is investigated by authors. Block size as well as thresholding artifacts in restored signals is eliminated by block

International Journal of Advanced Research in Computer and Communication Engineering

SITES

Gyan Ganga College of Technology Vol. 5, Special Issue 3, November 2016

attenuation and provides a good approximation of the In paper [9], significant improvements in audio denoising attenuation with oracle. A connection between the block is obtained by exploiting the persistence properties of attenuation and the decision-directed a priori SNR signals. In this contribution, a novel denoising operator estimator of Ephraim and Malah is studied by authors. An based on neighborhood smoothed, Wiener filter like adaptive block technique based on the dyadic CART algorithm [4, 5] is introduced by authors. The experiments show that the remaining noise artifacts is eliminated and transients of signals are preserved by the proposed method better than the methods which use short-time Fourier do [3]. The experiments were performed on speech signals filtering. According to a given performance criterion a sampled at 11 kHz. These speech signals were corrupted rationale for adaptive threshold selection is proposed. by white Gaussian noise. The performance of block attenuation is good when compared with the performance of other methods such as Adaptive Block Attenuation with Complex Wavelets, Hard Thresholding with Complex Wavelets, Ephraim and Malah decision-directed a priori proposed operators perform competitively compared to the SNR estimator + Wiener with Complex Wavelets / Short-Time Fourier. A number of experiments were performed efficient and robust to minor perturbation of the noise on various music signals also.

Matching Pursuit (MP) [6] is a greedy algorithm that iteratively builds a sparse signal representation. This work presents an analysis of MP in the context of audio denoising. By interpreting the algorithm as a simple shrinkage approach, we identify the factors critical to its success, and propose several approaches to improve its performance and robustness. We present experimental results on a wide range of audio signals, and show that the method is able to yield results that's are competitive with other audio denoising approaches. Notably, the proposed approach retains a small percentage of the transform signal coefficients in building a denoised representation, i.e., it produces very sparse denoised results.

The performance of adaptive block attenuation is good when compared with the performance of conventional thresholding operators. Sharper note transitions is obtained than the estimate with short-time Fourier. However, denoising using short-time Fourier performs better than the wavelet counterpart for the stationary parts when high pitch is involved because in high frequency bands shorttime Fourier has higher frequency resolution than wavelet representation. In paper [8], denoising problem is considered from the viewpoint of sparse atomic representation. The authors proposed a general framework of time-frequency soft thresholding which encompasses is lack of time frequency regularity because of which it and connects well known shrinkage operators as special cases. Convergence of the corresponding algorithms is time frequency structures are interpreted as musical noise. numerically evaluated and their performance in denoising Block thresholding is used for audio time frequency real life audio signals is compared to the results of similar denoising which regularizes the estimate and musical existing approaches. The novel approach is competitive noise is reduced efficiently. In paper [12], Adaptive timewith respect to signal to noise ratio and improves the state frequency Block Thresholding procedure using discrete of the art in terms of perceptual criteria. From the denoising point of view the neighborhood weighting could be considered as non-diagonal estimation. Musical noise naturally arising in diagonal estimation is reduced by these approaches.

shrinkage is derived. The purpose of the paper is concerning the operator design and derives a novel audio denoising operator, the persistent empirical Wiener estimate, which fuses recent developments in the field of structured sparsity with the properties of empirical Wiener Compared to the optimal thresholds a plain linear model depending on the level of the noise achieves minor performance differences. A simple method for estimating this noise level in case it is unknown is proposed. The state of the art, while being much more computationally level. The method presented in [10] is based on the Singular Value Decomposition (SVD) of the frame matrix representing the signal in the Overlap Add decomposition. Both the singular values and the singular vectors of the representation are modified to perform denoising. For the former a tapering model is used and for the latter a nonlinear PDE method is used. The aim of the proposed technique is to reduce additive random noise which has corrupted the signal. To test this method the authors performed tests on a variety of sounds from speech and music after corrupting them with additive gaussian noise. The authors used the sampling rate 16 kHz for speech and 44.1 kHz for music. The authors compared their method with Savitzky Golay filter in terms of MSE and SNR. Results show that performance of their method is good in reducing noise from signal.

In paper [11], the method used is non-diagonal in which block parameters are automatically adjusted to the nature of the audio signal. This is done by minimizing a Stein estimator of the risk which is calculated analytically from noisy signal values. Block thresholding method is used to eliminate musical noise. This block thresholding method performs attenuation of time-frequency coefficients after grouping the time frequency coefficients in blocks. In diagonal time-frequency audio denoising algorithms there create isolated time frequency structures. This isolated wavelet transform is used to reduce the noise from the audio signal and to achieve better SNR of the audio signal. For audio signal denoising discrete-wavelet transforms based algorithms are used. For denoising both soft thresholding and hard thresholding are used. In the paper

International Journal of Advanced Research in Computer and Communication Engineering

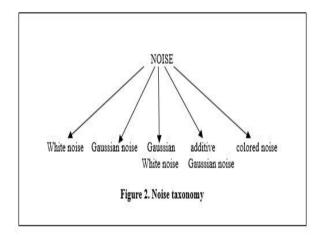
SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology

Vol. 5, Special Issue 3, November 2016

thresholding.


The optimality property discussed in [12] is "related to the ability of the wavelet basis to capture most of the signal energy in a small number of coefficients". The standard wavelet basis has been shown to be optimal in this regard various noise models used in audio denoising is shown. for representing signals that have local singularities. In this wavelet based denoising methods for speech enhancements have been discussed. In the first method, traditional "spatially selective noise filtration technique" is proposed and second method is based on "Undecimated Discrete Wavelet Transform". These methods can be used for edge detection satisfactorily. Wavelet methods have been used for uni-dimensional (1D) and two dimensional (2D) signal analysis, producing and analyzing irregular signals [8]. "The fundamental idea behind wavelets is to analyze according to scale.

Matching Pursuit (MP) is a greedy algorithm that iteratively builds a sparse signal representation. An analysis of Matching Pursuit in the context of audio denoising is presented in the work [13]. The algorithm is interpreted as a simple shrinkage approach, the authors identified factors critical to its success and several approaches to improve its performance and robustness is proposed. The authors have presented experimental results on a wide range of audio signals and shown that the method is able to yield results that are competitive with other audio denoising approaches. The authors introduced a new audio denoising approach called Greedy Time-Frequency Shrinkage (GTFS) that is able to produce competitive denoising results in terms of standard performance metrics, Signal to Noise Ratio (SNR) and Perceptual Evaluation of Audio Quality (PEAQ). The authors focused on the removal of uncorrelated Gaussian white noise from music and speech signals.

the authors compared the results of soft thresholding and The various audio denoising techniques are shown in the hard thresholding. Results showed that performance of taxonomy of figure 1 where MMSE-LSA is Minimum soft thresholding is better than performance of hard Mean Square Error Log Spectral Amplitude Estimation algorithm. Different noises are shown in the taxonomy of figure 2.

> In figure 1 classifications of various audio denoising techniques is provided, while in figure 2 classifications of

III. CONCLUSIONS

Audio is corrupted by different types of noise during acquisition of audio. The process of removing such noise from audio signals is audio denoising. In this paper different audio denoising techniques are reviewed & discussed. From the above discussion of these different techniques, we can conclude that the block thresholding technique is more efficient than other listed techniques because signal to noise ratio value of block thresholding technique is high. From the survey, we also can conclude that the non-diagonal estimation techniques are efficient compared to diagonal estimation techniques as they avoid producing musical noise. The STFT based block thresholding or DWT based block thresholding technique can efficiently eliminate the problem of musical noise. Hence, our focus will be to denoise the audio signals by using either of the mentioned technique.

REFERENCES

- Ilker Bayram, "Employing phase information for audio denoising", [1] IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014.
- [2] Matko Saric, Luki Bilicic and Hrvoje Dujmic, "White Noise Reduction of Audio Signal using Wavelets Transform with Modified Universal Threshold", University of Split, R. Boskovica b. b HR, volume 21000, 2005.
- Guoshen Yu, Emmanuel Bacry and Stephane Mallat, "Audio Signal [3] Denoising with Complex Wavelets and Adaptive Block Attenuation", IEEE International Conference on Acoustics, Speech and Signal Processing, Volume 3, 2007.

International Journal of Advanced Research in Computer and Communication Engineering

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology

- Vol. 5, Special Issue 3, November 2016
 [4] T. Cai and B.W. Silverman, "Incorporation information on neighboring coefficients into wavelet estimation", Sankhya, 63,
- 127-148, 2001
 [5] L. Breiman, J. Friedman, R. Olshen, and C.J Stone, Classification and Regression Trees, Belmont, CA: Wadsworth, 1983.
- [6] Gautam Bhattacharya, Philippe Depalle, "Sparse Denoising of Audio by Greedy Time-Frequency Shrinkage", IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014.
- [7] D. L. Donoho, "CART and best-ortho-basis: a connection", Ann. Statist. 25 1870–1911.
- [8] Guoshen Yu ,Stephane Mallat, Emmanuel Bacry, "Audio Denoising by Time-Frequency Block Thresholding", IEEE Transactions on Signal Processing, Vol. 56, No. 5, May 2008.
- [9] Lalitha kumari, Karunakar Reddy, Hari Krishna and Venkata Subash, "Time-Frequency Block Thresholding Approach for Audio Denoising", International Journal of Advances in Science and Technology, Vol. 2, No. 5, 2011.
- [10] Kai Siedenburg and Monika Dorfler, "Audio Denoising by Generalized Time-Frequency Thresholding", Audio Engineering Society Conference: 45th International Conference: Applications of Time-Frequency Processing in Audio, 2012.
- [11] Kai Siedenburg, "Persistent Empirical Wiener Estimation with Adaptive Threshold Selection for Audio Denoising", Proceedings of the 9th Sound and Music Computing Conference, pages 426 -433, 2012.
- [12] George Baravdish, Gianpaolo Evangelista, Olof Svensson and Faten Sofya, "PDE-SVD Based Audio Denoising", Proceedings of 5th International Symposium on Communications, Control and Signal Processing, IEEE, 2012.
- [13] K.P. Obulesu and P. Uday Kumar, "Implementation of Time Frequency Block Thresholding Algorithm in Audio Noise Reduction", International Journal of Science, Engineering and Technology Research (IJSETR), Volume 2, Issue 7, July 2013.
- [14] S. S. Joshi and Dr. S. M. Mukane, "Comparative Analysis of Thresholding Techniques using Discrete Wavelet Transform", International Journal of Electronics Communication and Computer Engineering, Volume 5, Issue (4) July, 2014.
- [15] Gautam Bhattacharya and Philippe Depalle, "Sparse Denoising of Audio by Greedy Time-Frequency Shrinkage", 2014 IEEE International Conference on Acoutics, Speech and Signal Processing (ICASSP), 2014.